Indoor Exposure to Selected Chemical Air Pollutants: A Systematic Review.
(1) Background: There is increasing awareness that the quality of the indoor environment affects our health and well-being. Indoor air quality (IAQ) in particular has an impact on multiple health outcomes, including respiratory and cardiovascular illness, allergic symptoms, cancers, and premature mortality. (2) Methods: We carried out a global systematic literature review on indoor exposure to selected air pollutants associated with adverse health effects, and related household characteristics, seasonal influences and occupancy patterns. We screened records from six bibliographic databases: ABI/INFORM, Environment Abstracts, Pollution Abstracts, PubMed, ProQuest Biological and Health Professional, and Scopus. (3) Results: Information on indoor exposure levels and determinants, emission sources, and associated health effects was extracted from 141 studies from 29 countries. The most-studied pollutants were particulate matter (PM2.5 and PM10); nitrogen dioxide (NO2); volatile organic compounds (VOCs) including benzene, toluene, xylenes and formaldehyde; and polycyclic aromatic hydrocarbons (PAHs) including naphthalene. Identified indoor PM2.5 sources include smoking, cooking, heating, use of incense, candles, and insecticides, while cleaning, housework, presence of pets and movement of people were the main sources of coarse particles. Outdoor air is a major PM2.5 source in rooms with natural ventilation in roadside households. Major sources of NO2 indoors are unvented gas heaters and cookers. Predictors of indoor NO2 are ventilation, season, and outdoor NO2 levels. VOCs are emitted from a wide range of indoor and outdoor sources, including smoking, solvent use, renovations, and household products. Formaldehyde levels are higher in newer houses and in the presence of new furniture, while PAH levels are higher in smoking households. High indoor particulate matter, NO2 and VOC levels were typically associated with respiratory symptoms, particularly asthma symptoms in children. (4) Conclusions: Household characteristics and occupant activities play a large role in indoor exposure, particularly cigarette smoking for PM2.5, gas appliances for NO2, and household products for VOCs and PAHs. Home location near high-traffic-density roads, redecoration, and small house size contribute to high indoor air pollution. In most studies, air exchange rates are negatively associated with indoor air pollution. These findings can inform interventions aiming to improve IAQ in residential properties in a variety of settings.
Publication Number: P/20/49
First Author: Vardoulakis S
Other Authors: Giagloglou E, Steinle S, Davis A, Sleeuwenhoek A, Galea KS, Dixon K, Crawford JO
Download PublicationCOPYRIGHT ISSUES
Anyone wishing to make any commercial use of the downloadable articles on this page should contact the publishers of the journals. Please see the copyright notices on the journals' home pages:
- Annals of Occupational Hygiene
- Occupational and Environmental Medicine
- American Journal of Respiratory Cell and Molecular Biology
- QJM: An International Journal of Medicine
- Occupational Medicine
Permissions requests for Oxford Journals Online should be made to: [email protected]
Permissions requests for Occupational Health Review articles should be made to the editor at [email protected]